Беседы о третьем элементе

22
18
20
22
24
26
28
30

В палочковых и колбочковых нейронах процесс нетипичен (я об этом говорил выше). В них потенциал покоя внутри клетки около -30 милливольт, а при возбуждении он не снижается, а нарастает до -70. Это — так называемая гиперполяризация.

Осталось рассказать про типичный коннектор для передачи сообщений между двумя нервными клетками, называемый синапсом.

Синапсы бывают электрические и химические. Первые, в основном, свойственны древним жизненным формам, вторые, на языке электриков, скорее, реле, а не котакт, потому что передача потенциала происходит не напрямую, а с использованием вещества-посредника, медиатора.

Под действием света молекулы родопсина и йодопсина, содержащиеся в рецепторных клетках (палочках и колбочках) меняют свою структуру (геометрию расположения атомов), что приводят в действие многоступенчатую систему химических реакций, запускающих процессы изменение электрического потенциала на мембране этих клеток, к которой подключены дендриты нервных клеток, следующего, биполярного слоя.

В месте соединения имеется типичный химический синапс. Он состоит из двух мембран, пресинаптической и постсинаптической, и зазора между ними. Когда электрический потенциал действия доходит до синапса, он вызывает выделение медиатора (в рецепторных нейронах это глютаминовая кислота) через пресинаптическую мембрану в синаптическую щель. Воздействуя на постсинаптическую мембрану, глютаминовая кислота вызывает, в зависимости от типа синапса, либо возбуждение, либо торможение клетки адресата.

Углубляться в подробный разбор синапсов не стоит, потому что у них великое множество подвидов, и, если все это разбирать досконально, выйдет пять толстых томов. Единственное, что хотелось бы добавить, — запоминание информации и обучение нейронных сетей происходит именно на синапсах. Его свойства обуславливает реакцию клетки адресата на сигнал, пришедший от клетки отправителя, и характер создаваемого синапса приводит к обучению системы.

Рецепторные нейроны не имеют полноценных аксонов и не умеют генерировать импульсы. При увеличении уровня освещенности они постепенно повышают потенциал, и-за чего происходит рост выделения медиатора на синапсе, пока тот не сработает. При этом на постсинаптической мембране биполярного нейрона потенциал нарастает скачкообразно, формируя полноценный электрический потенциал действия. Таким образом, рецепторный нейрон все еще работает в непрерывном аналоговом режиме, но синапс между ним и биполярным нейроном уже является устройством, преобразующим непрерывность в дискретность.

Несмотря на бесконечную точность, аналоговый сигнал крайне неудобен для передачи сообщений. Во-первых, любой сигнал затухает и расплывается с расстоянием, а также подвержен влиянию различных физических факторов. Бесконечная точность амплитуды аналогового сигнала становится бесконечно бессмысленной, если мы получили сигнал, ослабленный приблизительно в два или три раза. Во-вторых, совершенно убийственным фактором для аналогового сигнала являются шумы. И, в-третьих, на очень малых расстояниях нам начинает слать «приветы» квантовая механика в виде неопределенности положения, измеряемого в пространстве.

Ощутив аналоговый сигнал, пришедший снаружи, рецепторный нейрон не может просто отослать его, как есть, в мозг; с сигналом надо что-то сделать, чтобы сообщение не потерялось в шуме и дошло в целости и сохранности до получателя. Чтобы справиться с проблемой шума и ослабления сигнала с расстоянием, нервные клетки работают по принципу все или ничего. Есть некоторый порог внешнего воздействия (стимула), ниже которого велика вероятность перепутать это воздействие с шумом. На стимулы слабее этого порога нервные клетки попросту не реагируют, а если тот, наоборот, превышен, нервная клетка начинает генерировать электрические сигналы (нервные импульсы) одинаковой величины. Чем больше стимул, тем чаще возникают сигналы.

Единичный нервный импульс не несет информации о силе стимула, но зато он как раз такой величины, чтобы его можно было надежно выделить из шума, и не настолько велик, чтобы нас било электрическим током. Но несколько импульсов, пришедших один за другим, вполне могут нам рассказать о силе первичного стимула. Есть некоторый фон по 7–8 импульсов в секунду, означающий, что нейрон на той стороне в принципе жив. Если сигналы идут редко, по 15–20 в секунду, значит стимул был слабый. Но если импульсы барабанят по 150–200 в секунду, значит, стимул сильный, и глаз надо прикрыть, чтобы не ослепнуть.

Матчасть номер два (физиология зрительных путей)

Зрительные нервы обоих глаз перекрещиваются в хиазме и входят в промежуточный мозг на границе таламуса и гипоталамуса. Ради бога, не пугайтесь, я сейчас все объясню.

В сетчатке имеется около миллиона ганглиарных клеток, каждая из которых выпускает один аксон, соответственно, зрительный нерв содержит около миллиона проводков. Получается, миллион пикселей или мегапиксель — это среднее разрешение матрицы нашей сетчатки, но на деле острота зрения гораздо выше, потому что расположен этот мегапиксель очень неоднородно.

В области центральной ямки (желтого пятна) количество рецепторов на несколько порядков выше, чем на периферии, упакованы они крайне плотно и буквально жмутся друг к дружке. Эти нейроны отличаются малыми размерами и называются карликовыми, они не умеют ни видеть в темноте, ни реагировать на движение, но зато различают цвет и мельчайшие детали. Ганглиарные нейроны, отвечающие за сумеречное (палочковое) зрение и за ощущение движения, сдвинуты к периферии. Они больше по размерам, имеют более широкие рецептивные поля и расположены не плотно, их называют магноцеллюлярами.

В месте выхода зрительного нерва из сетчатки рецепторов нет, и там находится так называемое слепое пятно. Его мы не различаем и если какой-нибудь предмет окажется в его поле, он станет невидим.

Перед входом в первые центральные мозговые структуры зрительные пути проходят стадию перекреста, называемую хиазмой. В ней два зрительных нерва, от правого и левого глаза, перекрещиваются, так что дальше часть нервных волокон от правого глаза идут по левой стороне, а от левого — по правой. Перекрещивание нервных путей — это древнее таинственное заклятие хордовых, которое перешло и на нас, позвоночных. Никто не знает, почему и при каких обстоятельствах оно наложено, и, возможно, не узнает никогда. Как только наши вторичноротые предки, обладатели первого трубчатого мозга, дошли до стадии развития, на которой между чувствительным и двигательным нейронами появился третий, вставочный, тот при первой же возможности начал перекидывать все сигналы на противоположную сторону тела.

Перекрест хиазмы практически полный у тех животных, у которых глаза расположены по бокам головы. Но у обладающих бинокулярным зрением, то есть тех, у кого глаза сдвинуты вперед, так что поля зрения обоих частично или полностью перекрываются, логика перекреста изменена.

Очень удобно обозревать окрестность, когда глаза находятся по бокам от головы, — видно все, что делается спереди, сбоку и сзади. Можно спокойно греться на солнышке и чистить перья. А если какой-нибудь умник попробует незаметно подкрасться сзади, следует нагло зыркнуть черным глазом, злобно каркнуть, показать язык и улететь.

Но если ты прыгаешь с ветки на ветку, ситуация в корне меняется. Главной проблемой становится уже не обзор окрестностей, а то, что, если не допрыгнешь до следующей ветки на несколько сантиметров, упадешь с дерева и переломаешь себе все кости. В такой ситуации гораздо важнее уметь точно определять расстояние, и тут становится крайне выгодно иметь бинокулярное зрение.

Глаза сдвигаются на переднюю часть головы, и область обзора перекрывается так, что каждый глаз видит предмет под немного другим углом. Это позволяет сравнивать картинки. Для этого в хиазме половина нервных волокон уже не перекрещиваются, а остаются на своей стороне, причем волокна от одинаковой стороны обоих глаз оказываются в одном пучке, вместе. Сравнивая ту же самую картинку, пришедшую под разными углами зрения, мозг находит расстояния до объектов, достраивая воображаемый треугольник.